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Abstract11

Background: Structural magnetic resonance imaging (sMRI) can provide morpho-12

logical information about the structure and function of the brain in the same scanning13

process. It has been widely used in the diagnosis of Alzheimer’s disease (AD) and mild14

cognitive impairment (MCI).15

Purpose: To capture the anatomical changes in the brain caused by AD/MCI, deep16

learning-based MRI image analysis methods have been proposed in recent years. How-17

ever, it is observed that the performance of most existing methods is limited as they18

only construct a single type of deep network and ignore the significance of other clinical19

information.20

Methods: To make up for these defects, an ensemble framework that incorporates21

three types of dedicatedly-designed convolutional neural networks (CNNs) and a mul-22

tilayer perceptron (MLP) network is proposed, where three CNNs with entropy-based23

multi-instance learning pooling layers have more reliable feature selection abilities.24

The dedicatedly-designed base classifiers can make use of the heterogeneous data, and25

empower the framework with enhanced diversity and robustness. In particular, to26

consider the interactions among the base classifiers, a novel multi-head self-attention27

voting scheme is designed. Moreover, considering the chance that MCI can be trans-28

formed to AD, the proposed framework is designed to diagnose AD and predict MCI29

conversion simultaneously, with the aid of the transfer learning technique.30

Results: For performance evaluation and comparison, extensive experiments are31

conducted on the public dataset of the Alzheimer’s Disease Neuroimaging Initiative32

(ADNI). The results show that the proposed ensemble framework provides superior33

performance under most of the evaluation metrics. Especially, the proposed frame-34

work achieves state-of-the-art diagnostic accuracy (98.61% for the AD diagnosis task,35

and 84.49% for the MCI conversion prediction task).36

Conclusions: These promising results demonstrate the proposed ensemble framework37

can accurately diagnose AD patients and predict the conversion of MCI patients, which38

has the potential of clinical practice for diagnosing AD and MCI.39
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I. INTRODUCTION70

Alzheimer’s disease (AD) is a chronic neurodegenerative disease and contributes to 60-80%71

of dementias, over 30 million people around the world are diagnosed with AD1,2. As the72

most common form of dementia, AD can cause irreversible damage or destruction of neurons73

in brain regions over time, and gradually has a serious impact on the life of patients. Mild74

cognitive impairment (MCI) is often seen as a preclinical stage of AD, the predominant75

symptom of MCI is mild memory loss which has less impact on a person than AD3. Around76

10% of the MCI patients worldwide develop to AD per year, while a majority of them77

stay stable or even revert to the normal state4. Those MCI patients who develop to AD are78

medically known as progressive MCI (pMCI), in contrast, patients who stay stable are stable79

MCI (sMCI). Therefore, distinguishing sMCI from pMCI has been typically considered as80

an early prediction of AD dementia. In particular, because there is no effective treatment to81

cure AD, reliable early diagnosis is crucial for the control of AD. And early diagnosis will help82

for the better targeted selection of individuals with MCI, thus allowing early implementation83

of treatment strategies and altering the course of this disease5.84

Various biomarkers (e.g., positron emission tomography (PET)6 and MRI7) and85

biospecimens (e.g., cerebrospinal fluid (CSF)8) measured in vivo constitute dominant fea-86

tures in the diagnosis of AD. These biomarkers and biospecimens are typically employed for87

evaluating the development of AD, which have been well validated in many clinical settings9.88

For example, structural MRI can noninvasively capture cerebral atrophy caused by loss of89

neurons and dendritic pruning10, which provides a powerful auxiliary pattern for brain re-90

search and clinical diagnosis. In addition, the clinical information of individuals can be used91

to partially indicate disease status, which typically includes demographic information and92

cognitive and neuropsychological measures. Many cognitive and neuropsychological mea-93

sures, such as the Mini Mental State Examination (MMSE)11, Clinical Dementia Rating94

Scale (CDRSB)12, Alzheimer’s Disease Assessment Scale (ADAS)13, and Ray Auditory Ver-95

bal Learning Test (RAVLT)14, etc., can reflect the cognitive level of an individual and reveal96

the disease progression.97

Computer-aided methods have been a growing interest in the assessment and treatment98

of serious brain diseases, such as brain tumors15, autism16, and Parkinson’s disease17. AD99

as one of the serious brain diseases also receives much attention. To achieve the reliable100

diagnosis of AD and MCI, machine learning- (ML) or deep learning- (DL) based methods101

have been developed in many studies based on sMRI. These existing methods include at least102

two main components: 1) extraction of imaging features and 2) construction of classification103
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models. According to the scale of feature extraction, these methods are usually categorized104

into 1) subject-level, 2) region-level, 3) patch-level and 4) slice-level18. The subject-level105

methods19–22 extract features from voxel intensities directly, while the extracted features106

are high dimensional and these methods are susceptible to overfitting due to the small107

number of samples. The region-level methods23–26 focus on pre-determined brain regions108

of structure or function, and extract representative features from these regions. Although109

region-level features have lower dimensions than subject-level features, they may not cover110

all possible pathological parts of the whole brain and miss some subtle changes in pathology.111

The patch-level methods27–29 combine the above two methods, attempting to capture the112

disease-related pathologies in the local brain. The key step of patch-level methods is to113

select patches and combine them to obtain information about the brain. The slice-level114

methods30,31 are closer to the diagnosis modes of physicians, which utilize 2D slice images115

from sMRI to extract features and then count each slice-level result to obtain a subject-level116

diagnosis. ML-based methods usually need to extract features manually and then construct117

a conventional classifier to complete diagnosis, such as support vector machine (SVM). While118

DL-based methods perform feature extraction and classification only by convolutional neural119

networks (CNNs), which have been demonstrated more powerful than ML-based methods.120

In the above methods, the requirements of slice-level methods for computing resources121

are much lower than the use of regions, patches, or subjects. And the architectures of clas-122

sifiers in slice-level methods are also simpler than other methods. In addition, the superior123

performance of DL-based methods often depends on numerous learnable parameters of net-124

works. Many existing DL-based studies have been limited to using a single CNN for AD125

diagnosis or MCI conversion prediction. However, due to the scarcity of medical data, it is126

challenging for an individual CNN to achieve reliable classification with the small number127

of available training data.128

To overcome this limitation, ensemble learning methods have been applied to the disease129

diagnosis, and effectively combined with the CNN32. There are very few works used CNN-130

based ensemble classifiers for AD diagnosis in recent years33–36. Ensemble learning is the131

algorithm that constructs a set of classifiers and then performs classification by aggregating132

their predictions37. And the ensemble learning methods have been proved that can enhance133

the reliability of diagnosis, while the main drawback of these works is that each classifier is134

assigned the same weight when the final results are obtained by the majority- and average-135

voting. These fusion methods do not perform adaptive fusion based on each classifier and136

may be affected by the weaker classifier in the ensemble.137

I. INTRODUCTION
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In this work, the target is to propose an ensemble framework that can conduct the138

reliable diagnosis of AD and MCI simultaneously. For clarity, the following two research139

tasks are defined:140

1) Task 1 (AD vs. CN): Distinguish between whether a subject (a patient) is cognitively141

normal (CN) or with AD.142

2) Task 2 (pMCI vs. sMCI): Distinguish between whether an MCI patient belongs to143

pMCI or sMCI.144

The contributions of this work can be summarized as follows:145

• A robust ensemble learning framework is proposed to make use of the multi-modal146

information/heterogeneous data. Three types of dedicatedly-designed CNNs are in-147

corporated to exploit information from sMRI, and a shallow network (i.e., MLP) is148

employed to exploit the clinical information.149

• A multi-head self-attention voting scheme is proposed as an ensemble approach for150

base classifiers. The interactions among the classifiers are considered, and the defect151

that common voting approaches ignore the relationships among classifiers is overcome.152

• Multi-instance learning (MIL) is incorporated into base CNN classifiers. The entropy-153

based MIL pooling layer can reasonably consider the expressive abilities of different154

slices and integrate slice-level features.155

II. MATERIAL AND METHODS156

II.A. Data acquisition and image pre-processing157

We consider a dataset obtained from ADNI-1 and ADNI-2 in the Alzheimer’s Disease Neu-158

roimaging Initiative (http://www.loni.ucla.edu/ADNI)38. The ADNI database is the largest159

publicly available Alzheimer’s disease dataset and has been used in quite a few studies.160

Specifically, the baseline dataset contains T1-weighted MRI obtained from 771 subjects,161

which consists of 244 CN, 299 MCI, and 228 AD subjects. Depending on whether the MCI162

subjects progressed to the AD stage within 36 months after baseline assessment, they can be163

further divided into 170 sMCI and 129 pMCI subjects. The demographic information (age,164

gender, and education years), cognitive and neuropsychological measures (CDRSB, ADAS,165

MMSE, RAVLT) as well as the ApoE4 genotyping of the subjects are shown in Table 1.166

Last edited Date :
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Table 1: Information summary of the studied dataset extracted from ANDI
Gender
(M/F) Age

Education
(years)

APoE4
level

CDRSB
ADAS MMSE RAVLT

0 1 2 ADAS11 ADAS13 ADASQ4 immediate learning forgetting %forgetting
CN 118/126 74.2±6.0 16.5±2.6 17861 5 0.2±0.1 5.6±2.7 8.6±4.0 2.7±1.7 29.1±1.1 45.4±10.0 5.9±2.2 3.7±2.6 34.9±26.7
sMCI 99/71 71.8±7.4 16.2±2.9 10453 13 1.2±0.7 8.7±3.8 13.9±5.6 4.7±2.2 28.1±1.7 37.9±11.1 4.9±2.6 4.3±2.4 50.9±30.7
pMCI 73/56 73.8±7.1 15.9±2.8 42 57 30 2.0±1.0 13.0±4.0 21.4±5.2 7.4±1.9 26.6±1.7 28.0±6.9 3.1±2.0 5.2±2.3 77.4±27.8
AD 124/104 74.9±7.8 15.2±2.9 71 11542 4.5±1.6 19.9±6.6 30.1±7.8 8.6±1.5 23.1±2.0 22.9±7.1 2.0±1.6 4.5±1.7 88.8±21.4

*The data are presented as mean ± standard deviation (std).

Figure 1: The preprocessing pipeline of sMRI. The pipeline includes AC-PC correction,
intensity correction, skull stripping, tissue segmentation, and slice selection. Taking an
sMRI with the size of 256 × 256 × 166 voxels as an example, the image size after each
processing step is shown.

As shown in Fig. 1, the sMRI data go through a standard pipeline preprocessing167

procedure, including anterior commissure (AC)-posterior commissure (PC) correction, in-168

tensity correction, skull stripping, tissue segmentation, and slice selection. Specifically, we169

use the MIPAV software (https://mipav.cit.nih.gov/clickwrap.php) for AC-PC correction170

and adopt N3 algorithm39 for intensity correction. Skull stripping and tissue segmentation171

are performed by using the CAT12 toolbox (http://dbm.neuro.uni-jena.de/cat/) via SPM12172

software (http://www.fil.ion.ucl.ac.uk/spm/software/spm). Following skull stripping, the173

quality of the preprocessed images is checked manually. And the qualified images are then174

segmented to obtain the gray matter (GM) tissues, which are aligned to Montreal Neurologi-175

cal Institute T1 Template40. The GM images are smoothed with a 3.0 mm full width at half176

maximum (FWHM) isotropic Gaussian kernel. As a result, the sizes of obtained GM tissues177

are 121× 145× 121 voxels, and the spatial resolutions are 1.5× 1.5× 1.5mm3. Considering178

that GM is the most notably affected tissue by AD, it is used for feature extraction. Then,179

the 3D volumetric data is sectioned along the axial direction, and the slices are sampled180

from the central slice to the edges of the 3D volumetric data. The edge slices largely cover181

cross-sections of the brain stem, cerebellum, and cerebral cortex, which are the anatomic182

II. MATERIAL AND METHODS II.A. Data acquisition and image pre-processing
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areas less relevant to AD pathology. Therefore, the middle two-thirds of the slices (80 slices)183

are selected and resized to 256 × 256 and 300 × 300 pixels. The selected slices cover areas184

including ventricle, inferior temporal, and middle temporal cortices. And these areas have185

been reported as the regions correlated with AD pathology, which can provide rich tissue186

information41.187

For the clinical information, numerical normalization (i.e., Min-Max normalization) is188

employed to normalize the values of each separate clinical factor to the range of [0, 1].189

Available data Classification

Voter

Figure 2: Illustration of the proposed ensemble framework for AD diagnosis and MCI con-
version prediction. Raw 3D sMRI and corresponding clinical information of each individual
are first preprocessed, multiple 2D slices are sampled from each sMRI, and the clinical in-
formation is normalized. The processed data are then fed into four different base classifiers,
and an MHSA voting scheme aggregates the outputs of each base classifier for the final pre-
diction.

II.B. Overall ensemble learning architecture190

The proposed ensemble framework is illustrated in Fig. 2, where the inputs are the 3D sMRI191

data and clinical information, and the output is the AD diagnosis (i.e., AD or CN) or MCI192

conversion prediction (i.e., pMCI or sMCI). Specifically, 3D sMRI and clinical information of193

each individual are processed via several preprocessing steps. After that, the multiple slices194

sampled from 3D sMRI and normalized clinical information are as the inputs of different base195

classifiers. The base classifiers are designed to have different architectures, each base classifier196

Last edited Date : II.B. Overall ensemble learning architecture
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can play an important part in this ensemble framework. Base classifier 1, base classifier 2,197

and base classifier 3 are used to extract the features of images and give the initial predictions198

based on sMRI data, where the entropy-based multi-instance learning (MIL) pooling layer199

is designed to consider different information densities of slices and further improve their200

expression abilities. Base classifier 4 is designed as an MLP to make use of the clinical201

information, which can introduce different patient information than the sMRI modal. Then,202

four base classifiers are fused via MHSA voting to obtain the classification results for two203

classification tasks (i.e., AD vs. CN and pMCI vs. sMCI).204

II.C. Base classifiers in the ensemble framework205

In this section, the detailed architecture of each base classifier and their mentalities of de-206

signing are introduced, including three CNNs (base classifier 1, 2, and 3) and an MLP model207

(base classifier 4).208

The architectures of base classifiers are shown in Fig. 3, all base CNN classifiers (Base209

classifier1, 2, and 3) have feature extraction, entropy-based MIL pooling, and classification210

layer three parts. Scaling up the dimension of network width, depth, and resolution has been211

widely used to improve the performance of networks. However, scaling up a CNN in all three212

dimensions of width, depth, and resolution will greatly increase the number of parameters.213

Considering the consumption of computing resources and the efficiency of ensemble learning,214

it is not necessary to design an overly complex model as one of the base classifiers. Thus, the215

three base CNN classifiers are scaled up in width, depth and resolution, respectively. The216

number of layers and the number of parameters in these classifiers are controlled. As a result,217

the average number of three CNNs parameters is less than that of ResNet3442, and the layers218

of them are less than 19 layers. Specifically, three base CNN classifiers have different scales219

of network width, depth and resolution, respectively. Base classifier 1 has higher resolutions220

than the other two, which means that it can potentially capture more fine-grained patterns.221

Base classifier 2 only scales up in terms of network depth. Deeper networks can fit more222

complex deep features. Base classifier 3 has a wider architecture and can focus on richer223

features. More details of these base classifiers will be introduced as follows.224

II.C.1. Entropy-based MIL pooling225

AD-related pathological areas usually exist in some partial areas of the brain, and these areas226

in sMRI images are unlabeled, namely, only the entire sMRI image is labeled as a certain227

II. MATERIAL AND METHODS II.C. Base classifiers in the ensemble framework
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Figure 3: The architectures of base classifiers. Base classifier 1, base classifier 2, and base
classifier 3 are CNN based classifiers with MRI images as inputs, which mainly consist of
convolutional layers, designed special blocks (i.e., Res block, Inception block), and pooling
layers. Base classifier 4 is an MLP with clinical information as inputs, and it consists of
fully connected layers. The number of channels for each convolutional layer or special block
is displayed above them. When the sizes of the feature maps change after passing through
some layers, the sizes are shown below the convolutional layers or special blocks in the form
of H ×W .

category. As described in Section II.A., the slices are sampled from 3D volumetric data along228

the axial direction and used as inputs of base CNN classifiers. These processes can be seen229

as the construction of bags in MIL. Considering the properties and preprocessing processes230

of sMRI images, both tasks in this work can be solved with the MIL strategy.231

Let Xi = {xi1, xi2, ..., xini
} denotes the bag of the i-th sMRI, where xkl ∈ Rd(k =232

1, 2, ..., nk) represents the l-th slice of the k-th bag. Then, these slices are input into233

the feature extraction part of base CNN classifiers to obtain slice-level features Ei =234

{ei1, ei2, ..., eini
}, followed by a proposed entropy-based MIL pooling layer to generate235

embedding-level features Bi from slice-level features. The proposed entropy-based MIL pool-236

ing layer combines information entropy with MIL. The information entropy of an image is237

a statistical form of the features, which evaluates the information density of an image. In238

Last edited Date : II.C. Base classifiers in the ensemble framework
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general, the images with high entropy values have more information about target areas (e.g.,239

brain, lung, etc.). In the clinical environment, for medical images with explicit sequences,240

such as MRI and CT, physicians also focus on the slices with more abundant tissue infor-241

mation when diagnosing diseases. Entropy as a form of reflecting image information density,242

combining it with MIL can not only be closer to actual clinical diagnosis, but also further243

improve the performance of diagnosis. This is the motivation for us to design entropy-244

based MIL pooling. The entropy-based MIL pooling layer can be described by the following245

equations:246

Bi = Concatni
l=1(hil · eil) (1)247

248

hil = norm(
Hil∑ni

l=1 Hil

) (2)249

where hil is normalized weight that can be calculated by Eq. (2), and Hil in Eq. (2)250

is the information entropy of the l-th slice of i-th sMRI. eil corresponds to the l-th slice-251

level features of Ei. Concat is channel concatenation. In addition, mean MIL pooling and252

maximum MIL pooling are commonly used operators in MIL. Mean MIL pooling considers253

that all slices have the same ability to express the information of features, it generates254

embedding-level features by averaging slice-level features. Maximum MIL pooling depends255

on only one slice to determine the prediction of the individual. Different from these two256

pooling operators, entropy-based MIL pooling comprehensively considers the information257

entropy of different slices, which can utilize the information expression ability of these slices258

to achieve a more accurate diagnosis.259

After obtaining embedding-level features Bi, the classification layer is used to predict260

the category (i.e., AD, CN, pMCI, or sMCI) of each input sMRI.261

P (Y |X) = fcls(Bi) (3)262

where P (Y |X) is the probability that the subject belongs to a specific class, Y denotes the263

true category, fcls(·) denotes the mapping function of the classification layer.264

II.C.2. Base classifier 1265

The base classifier 1 is designed to have higher resolution, and it is constructed by stacking266

convolutional layers without adopting more complex modules. Specifically, base classifier 1267

contains twelve convolutional (Conv) layers, an entropy-based MIL pooling layer, and two268

fully connected (FC) layers. The number of channels for Conv layers is mainly 32, 64, 128,269

II. MATERIAL AND METHODS II.C. Base classifiers in the ensemble framework
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256, and 512. Each Conv layer consists of one convolutional layer, batch normalization (BN),270

and rectified linear unit (ReLU) activation, where the convolutional layer has 3×3 kernel size,271

unit stride with unit zero padding. Several 3×3 max pooling layers and an adaptive average272

pooling layer are inserted in the specific positions of the model, which can downsample the273

number or depth of the intermediate feature maps. An entropy-based MIL pooling layer is274

inserted between the average pooling layer and FC layers. At the end, two FC layers with275

1024 and 2 nodes respectively as classification layer are adopted to map distributed features276

into the sample label space. The input images of base classifier 1 have higher resolutions277

than those of base classifier 2 and base classifier 3, and the intermediate feature maps also278

have higher resolutions. With high resolutions, base classifier 1 tends to be more sensitive279

to fine-grained patterns, which can better focus on subtle pathological changes in slices.280

II.C.3. Base classifier 2281

The base classifier 2 with deeper depth is designed to characterize complex nonlinearities.282

Scaling up the depth of networks may bring gradient instability and network degradation,283

therefore, base classifier 2 draws on the idea of residual learning, which adopts Conv layers284

and residual (Res) blocks as main components. Specifically, it consists of three Conv layers,285

six Res blocks, an entropy-based MIL pooling layer, and two FC layers. At the beginning of286

the model, three Conv layers with the same composition as in base classifier 1 are used to287

extract shallow feature maps, where the number of channels for Conv layers is 32, 32 and 64,288

respectively. Then a max pooling layer merges the features and reduces their dimensions,289

followed by six Res blocks. As shown in Fig. 3, each Res block contains two serial Conv290

layers, and the output of the second Conv layer adds the input of the Res block through a291

shortcut connection, the result of the addition is used as the output of the Res block. The292

number of channels for Res blocks is 64, 128, 128, 256, 256 and 512, respectively. In order to293

achieve the effect of downsampling, the stride of the first Conv layer in the third, fifth and294

sixth Res block is respectively set to 2, other Conv layers in Res blocks have the same settings295

as the Conv layers in the base classifier 1. After that, the average pooling layer, MIL pooling296

layer, and classification layer that same as base classifier 1 are adopted. Base classifier 2297

with deeper depth is designed to characterize complex nonlinearities. The Res blocks can298

transfer shallow feature information extracted by three Conv layers to deeper layers, thereby299

enhancing feature representations and strengthening their learning. Benefiting from network300

depth, base classifier 2 has better nonlinear representation ability, which can learn to fit more301

complex features and generalize well on diagnostic tasks.302

Last edited Date : II.C. Base classifiers in the ensemble framework
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II.C.4. Base classifier 3303

The base classifier 3 is designed as a network with wider architecture. The suitable network304

width can ensure that the layers learn rich features, such as texture features in different305

frequencies and different directions. Base classifier 3 consists of five Conv layers, six Inception306

blocks, an entropy-based MIL pooling layer, and two FC layers. To maintain the proper size307

of feature maps, the stride of the first Conv layer is set to 2, followed by four Conv layers,308

where 1×1 Conv layer allows the model to control the depth of the feature more flexibly as309

needed. The number of channels for Conv layers is 32, 32, 64, 128 and 192, respectively.310

After serial Conv layers, the Inception blocks further process the extracted features. As311

shown in Fig. 3, each Inception block has four paths to perform convolution operations on312

the input and concatenates to generate the output of the block, it contains several 1×1, 3×3,313

and 5×5 Conv layers. The number of input channels for Inception blocks is 256, 480, 512,314

512, 768 and 1024, respectively. Similar to the base classifier 1, the 3×3 max pooling layers315

and an adaptive average pooling layer are inserted in the specific positions to downsample316

the feature maps, the MIL pooling layer and classification layer are inserted at the end of317

the model. In base classifier 3, the maximum number of channels for blocks reaches 1024,318

which is twice the maximum number of the other base CNN classifiers. More channels319

characterize richer feature information of images, which can endow the model with better320

representational ability. Thus, base classifier 3 with wide architecture can potentially better321

learn and characterize rich tissue information in slices.322

II.C.5. Base classifier 4323

As summarized in Table 1, the clinical information data including age, gender, cognitive test,324

etc. were collected from the subjects. Since these data are not as complicated as images,325

shallow neural networks are enough to mine information in these clinical data. For this326

reason, MLP is chosen as the base classifier 4. In more detail, the MLP is composed of three327

layers, including an input layer, a hidden layer, and an output layer. The number of nodes328

for three layers is 15, 20 and 2, respectively. All layers contain one FC layer, followed by BN329

and ReLU activations. Since the MLP is simple in structure and with few parameters, it is330

suitable for clinical information data analysis.331

The loss function in the proposed base classifiers for classification can be formulated as:332

L(X, Y, P, ωc) = −log(P (Y |X), Y ) (4)333

II. MATERIAL AND METHODS II.C. Base classifiers in the ensemble framework
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where X denotes the input data of the base classifiers (i.e., sMRI for base CNN classifiers,334

clinical information data for MLP), Y denotes the corresponding true label, P denotes the335

predicted results, and ωc is the learnable parameters of these classifiers.336

II.D. Ensemble approaches for classifiers337

The predictions from these trained base classifiers are combined by different ensemble ap-338

proaches. Specifically, common voting approaches (i.e., majority voting, weighted voting,339

SVM-based voting) and proposed multi-head self-attention (MHSA) voting have been per-340

formed on classifiers of ensemble framework and compared. In common voting approaches,341

the fixed weight is assigned to each classifier in the ensemble for the aggregation of the clas-342

sification results. The major drawback of these approaches is that the aggregation is not343

data-adaptive and ignores the interactions among base classifiers, which potentially brings344

bias to the final classification, especially in the presence of weak base classifiers.345

Considering that common voting approaches ignore the interactions among base clas-346

sifiers and potentially introduce bias resulting in unreliable predictions, an MHSA voting347

scheme is proposed to aggregate the results of base classifiers, which can calculate and ex-348

ploit the interactions among base classifiers during their fusion. The MHSA voting is to349

calculate the correlation and importance among the base classifiers, and then use these in-350

teractions to aggregate the results and obtain the final classification results. It is defined as351

linear transformation, interaction calculation, and aggregation & final decision three stages.352

The proposed MHSA voting scheme is shown in Fig. 4353

1) Linear Transformation: In this stage, the outputs of each base classifier are linearly354

transformed into three vectors q, k, and v, and the distribution spaces of these vectors355

are basically the same. Formally, an embedded representation is constructed to represent356

the outputs of all base classifiers. Denote the embedded representation as Φ, where Φ =357

[ϕ1, ϕ2, ..., ϕn, ..., ϕN ]
T ∈ RN×C . Here, ϕn ∈ R1×C(n = 1, 2, ..., N) indicates the outputs of358

the n-th base classifier, N and C are the number of base classifiers and the output dimension359

of each base classifier, respectively. Define Q, K and V as the set of q, k and v, respectively,360

where Q = [q1, q2, ..., qN ]
T = Φ ·WQ ∈ RN×C , K = [k1, k2, ..., kN ]

T = Φ ·WK ∈ RN×C , and361

V = [v1, v2, ..., vN ]
T = Φ ·W V ∈ RN×C . Here, WQ ∈ RC×C , WK ∈ RC×C , and W V ∈ RC×C

362

are the weight of the linear transformation matrix.363

2) Interaction Calculation: In the second stage, we need to score all the base classifiers364

based on the results of a certain classifier, and this score determines the degree of interactions365

Last edited Date : II.D. Ensemble approaches for classifiers



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

page 12 1st author name or however authors to be briefly identified

e
Φ

h

A
F

e

L

Q

K

V

Φ

S

A

Figure 4: Illustration of the proposed MHSA voting scheme. It includes linear transforma-
tion, interaction calculation, and aggregation for the final decision three parts. The linear
transformation part transforms the outputs of based classifiers into three vectors Q, K, and
V . The interactions among base classifiers are calculated based on Q, K, and V by the inter-
action calculation part. Then, these interactions are adopted to enhance the representation
and generate the final decision.
among this classifier and other base classifiers. The similarity between each pair of base366

classifiers is calculated by the dot product of K and Q, namely QKT . Then a SoftMax367

function is used to normalize the similarity QKT , and get an interaction score S ∈ RN×N
368

which can reflect the interactions among the base classifiers.369

S =




s11 s12 · · · s1N

s21 s22 · · · s2N
...

...
. . .

...

sN1 sN2 · · · sNN



= SoftMax(

QKT

√
d

) (5)370

where sij represents the interaction between the qi and kj,
√
d can make the MHSA voting371

scheme have a more stable gradient flow during the training process. After that, the V372

is multiplied by S, which means maintaining the relationship among the associated base373

classifiers and reducing the impact of the less-correlated classifiers.374

3) Aggregation & Final Decision: To learn interaction information in different represen-375

tation subspaces, the above two stages are performed several times, and the results of these376

times are concatenated and linearly transformed.377

A = Aggregation(Q,K, V ) = Concat(S1V, ...ShV ) ·WA (6)378

where A is the aggregation result, Sk(k = 1, ..., h) indicates interaction score in different379

representation subspaces, WA ∈ RC×C is the linear transformation matrix, Concat is channel380

II. MATERIAL AND METHODS II.D. Ensemble approaches for classifiers
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concatenation. Then the aggregation result is passed through the residual connection and381

the FC layer to enhance the representation, and get the final decision, which can be described382

by the following equation:383

F = FC(A+ Φ) + A (7)384

where F is the final decision generated by the MHSA voting. The MHSA voting can achieve385

the modeling of the interactions among the base classifiers and fuse the outputs of each base386

classifier based on these interactions.387

II.E. Implementations388

The proposed ensemble framework is implemented based on the PyTorch deep learning389

library. The framework is trained on a PC with an NVIDIA GTX 1080Ti graphics card.390

The loss function in Eq. (4) is adopted to supervise the learning of the base classifiers391

parameters, which are optimized by the Adam optimizer with a low learning rate of 0.0001.392

To validate the proposed framework, a series of comparison and ablation experiments are393

conducted. In the comparison experiments, several ML-based and DL-based methods were394

compared with the proposed framework to demonstrate the superiority of our framework.395

Since all results acquired by different methods are measured based on the same ADNI cohort,396

and most of these methods have similar pre-processing pipeline and implementation details397

to that in the proposed method, we compare our results with the reported results by the398

compared methods. In the ablation experiments, the effectiveness of the entropy-based399

MIL pooling layer and MHSA voting scheme, several studies are conducted to evaluate the400

influence of transfer learning and clinical information, and the indispensability of four base401

classifiers. More details about the implementations are as follows.402

II.E.1. Data split403

20% samples (154 samples) of the dataset are selected as the test samples and the remaining404

80% samples (617 samples) as the training samples. A five-fold cross-validation strategy405

is adopted to verify the reliability of the proposed framework, in which four folds of the406

training samples are used for training and one fold for validation. To make sure that no407

significant difference in the age and gender distributions among the training, validation, and408

test samples, the Chi-square test is used to verify the distributions.409

Last edited Date : II.E. Implementations
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II.E.2. Training strategy410

For task 1 (i.e., AD vs. CN), the base CNN classifiers are trained from scratch directly, and411

the parameters of them are initialized randomly. For task 2 (i.e., pMCI vs. sMCI), transfer412

learning is adopted to train the base CNN classifiers. MCI is a preclinical stage of AD,413

the structural changes of brains caused by MCI may be more subtle than those caused by414

AD, which means task 2 is more challenging than task 1. According to the development415

of AD, the two tasks are highly correlated, and the information learned from AD and CN416

subjects can be employed as a supplement to enrich the information for task 228,29. Thus,417

the parameters of base CNN classifiers trained on task 1 are transferred to initialize the418

training for task 2. Early stopping is applied for all training processes, the training process419

is terminated when the validation loss exceeds the lower threshold in 10 continuous epochs.420

II.E.3. Evaluation metrics421

In two classification tasks, four evaluation metrics, namely, classification accuracy (ACC),422

sensitivity (SEN), specificity (SPE), and the area under the receiver operating characteristic423

curve (AUC) are adopted to evaluate the classification performance. These metrics are424

respectively defined as:425

ACC =
TP + TN

TP + TN + FP + FN
(8)426

427

SEN =
TP

TP + FN
(9)428

429

SPE =
TN

TN + FP
(10)430

where TP denotes true positive, TN denotes true negative, FP denotes false positive, and FN431

denotes false negative. The ROC curve is generated according to the (SEN, 1−SPE) pairs.432

The AUC characterizes the classification performance of the methods, the performance is433

better when AUC is closer to 1.434

III. RESULTS III.A. Comparison with other methods
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III. RESULTS435

III.A. Comparison with other methods436

To demonstrate the superiority of the proposed ensemble framework, we compare the results437

on two tasks of our method and other methods. The classification results on ADNI dataset438

are summarized in Table 2.439

Table 2: Comparison of the proposed method with the existing state-of-the-art methods
reported in the literature.

Methods Data
AD vs. CN pMCI vs. sMCI

ACC SEN SPE AUC ACC SEN SPE AUC

ML-based

Moradi et al.20 sMRI + Clinical info - - - - 82.00% 87.00% 74.00% 90.00%
Beheshti et al.21 sMRI 93.01% 89.13% 96.80% 93.51% 75.00% 76.92% 73.23% 75.08%
Calvini et al.23 sMRI - 74.00% 85.00% 86.30% - - - -

Koikkalainen et al.24 sMRI 86.00% 81.00% 91.00% - 72.10% 77.00% 71.00% -
Liu et al.25 sMRI 93.06% 94.85% 90.49% 95.79% 79.25% 87.92% 75.54% 83.44%
Shi et al.26 sMRI + PET + CSF 95.00% 95.30% 94.70% 93.20% - - - -
Tong et al.27 sMRI 90.00% 86.00% 93.00% - 72.00% 69.00% 74.00% -
Coupe et al.28 sMRI 91.00% 87.00% 94.00% - 74.00% 73.00% 74.00% -

DL-based

Suk et al.18 sMRI + PET 95.35% 94.65% 95.22% 98.77% 75.92% 48.04% 95.23% 74.66%
Shi et al.43 sMRI + PET 97.13% 95.93% 98.53% 97.20% 78.88% 68.04% 86.81% 80.10%
Liu et al.44 sMRI + PET 91.40% 92.32% 90.42% - - - - -
Cui et al.45 sMRI 92.29% 90.63% 93.72% 96.95% 75.00% 73.33% 76.19% 79.70%
Liu et al.29 sMRI 91.09% 88.05% 93.50% 95.86% 76.90% 42.11% 82.43% 77.64%
Kang et al.34 sMRI 90.40% - - - 66.70% - - -
Lian et al.46 sMRI 90.30% 82.40% 96.50% 95.10% 80.9% 52.60% 85.40% 78.10%
Chen et al.47 sMRI 95.32% 91.18% 93.94% - 77.60% 71.62% 75.85% -
Zhang et al.48 sMRI 93.20% 92.40% 94.00% 96.10% 82.90% 90.00% 75.70% 86.50%
Basaia et al.22 sMRI + PET + CSF 93.20% 93.00% 93.30% - - - - -

Proposed sMRI + Clinical info 98.61% 98.54% 98.67% 99.08% 84.49% 83.50% 81.48% 85.69%

In the task of AD vs. CN, the best ACC, SEN, SPE, and AUC values implemented by440

previous works are respectively 97.13%, 95.93%, 98.53%, and 98.77%, which are realized by441

the works of Shi et al.43 and Suk et al.18 The proposed method has the ACC of 98.61%,442

the SEN of 98.54%, the SPE of 98.67%, and the AUC of 99.08%, which are respectively443

1.48%, 2.61%, 0.14%, and 0.31% higher than the best metrics achieved by other methods.444

In the task of pMCI vs. sMCI, the values of ACC, SEN, SPE, and AUC obtained by the445

proposed framework are respectively 84.49%, 83.50%, 81.48%, and 85.69%. Our method446

achieves the best prediction accuracy, which is 1.59% higher than the best ACC obtained447

by Zhang et al.48 These results show that the proposed framework can indeed yield a more448

accurate diagnosis, and have satisfactory performance on other evaluation metrics.449
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III.B. Effectiveness of entropy-based MIL pooling450

To evaluate the effectiveness of entropy-based MIL pooling, we compare the results of base451

classifiers without MIL pooling and with different MIL pooling layers. The compared meth-452

ods include non-MIL+averaging method, Mean MIL pooling method, and Maximum pooling453

method. The non-MIL+averaging method has the same architectures as base CNN classi-454

fiers except no MIL pooling, and performs classification through averaging the slice-level455

results. Both mean MIL pooling method and maximum pooling method also have the same456

architectures as base CNN classifiers, only replacing the entropy-based MIL pooling layer.457

The classification results in terms of ACC and AUC for two tasks are shown in Fig. 5.458

From Fig. 5, it can be learned that MIL methods (i.e., mean MIL pooling, max MIL459

pooling, and entropy-based MIL pooling) yield better results in terms of ACC and AUC.460

Taking the base classifier 1 as an example, the ACC and AUC achieved by MIL methods461

are on average higher 0.0319 and 0.0247 than non-MIL method in task 1, and higher 0.0199462

and 0.0249 in task 2. Compared with mean MIL pooling and max MIL pooling methods,463

the proposed entropy-based MIL pooling achieves the best results on both tasks, which can464

reach 0.9372 ACC and 0.9480 AUC on task 1 (achieved by base classifier 2), 0.7959 ACC465

and 0.8081 AUC on task 2 (achieved by base classifier 1). The above results reflect that the466

MIL methods can improve the classification performance than the non-MIL method, and467

confirm that the entropy-based MIL pooling method is more effective than the normal MIL468

methods, which shows the effectiveness of entropy-based MIL pooling.469

III.C. Effectiveness of MHSA voting470

A key component of the proposed ensemble framework is the ensemble approaches to fuse471

the base classifiers. We conduct the experiments to verify the effectiveness of MHSA voting.472

Specifically, base classifier 1, base classifier 2, and base classifier 3 are fused via different473

voting approaches including majority voting (MV), weighted voting (WV), SVM-based vot-474

ing (SVM), and the proposed MHSA voting. Table 3 reports the corresponding results of475

different ensemble approaches.476

From Table 3, it can be observed that two learnable ensemble approaches (i.e., SVM-477

based voting, and MHSA voting) yield better classification performance on two tasks than478

unlearnable approaches (i.e., majority voting, and weighted voting). In the task of AD479

vs. CN, the results obtained by majority voting and weighted voting are lower than the480

maximum values of ACC and AUC (achieved by base classifier 2) before fusion. And the481

III. RESULTS III.B. Effectiveness of entropy-based MIL pooling
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vs.

(a) Classification results in terms of ACC
and AUC for task 1

vs. 

(b) Classification results in terms of ACC
and AUC for task 2

Figure 5: Classification results in terms of ACC and AUC achieved by three base CNN
classifiers with different MIL pooling layers for two tasks, i.e., AD vs. CN, and pMCI vs.
sMCI. The error bars denote the standard deviations of the results.
results obtained by SVM-based voting are basically consistent with the maximum values482

before fusion. Only the MHSA voting achieves an improvement in results, with the ACC of483

0.9419, and the AUC of 0.9545, which is at least 0.0047 higher than the metrics generated484

by base classifiers. In the task of pMCI vs. sMCI, all ensemble approaches can obtain better485

results than that before fusion. The results obtained via majority voting have the minimum486

improvement, with the ACC of 0.8061, and the AUC of 0.8165. The maximum improvement487

Last edited Date : III.C. Effectiveness of MHSA voting
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Table 3: Classification results of different ensemble approaches on two tasks.
Ensemble
Members

Ensemble
Approach

AD vs. CN pMCI vs. sMCI
ACC AUC ACC AUC

Base classifier 1 - 0.9233 ± 0.0314 0.9393 ± 0.0323 0.7959 ± 0.0454 0.8081 ± 0.0271
Base classifier 2 - 0.9372 ± 0.0311 0.9480 ± 0.0207 0.7837 ± 0.0447 0.7929 ± 0.0251
Base classifier 3 - 0.9186 ± 0.0416 0.9388 ± 0.0315 0.7857 ± 0.0492 0.7963 ± 0.0332

Base classifier
1, 2, 3

MV 0.9279 ± 0.0283 0.9306 ± 0.0301 0.8061 ± 0.0366 0.8165 ± 0.0318
WV 0.9302 ± 0.0245 0.9415 ± 0.0202 0.8265 ± 0.0409 0.8316 ± 0.0431
SVM 0.9349 ± 0.0209 0.9478 ± 0.0199 0.8286 ± 0.0422 0.8367 ± 0.0395
MHSA 0.9419 ± 0.0232 0.9545 ± 0.0205 0.8408 ± 0.0350 0.8535 ± 0.0283

Data are mean ± standard deviation.
MV: majority voting; WV: weighted voting; SVM: SVM-based voting; MHSA: MHSA voting.

on results is achieved by MHSA voting, which is at least 0.0449 higher than the metrics488

generated by base classifiers. Compared with these common ensemble approaches, MHSA489

voting can further improve the effects of fusion. These results confirm the effectiveness of490

using MHSA voting.491

III.D. Influence of transfer learning492

To demonstrate the impact of transfer learning, we compare the experimental results with493

and without transfer learning. In this group of experiments, we train base classifiers from494

scratch for task 2 without adopting transfer learning strategy, and compare their classification495

performance with that obtained by base classifiers trained with transfer learning strategy.496

Fig. 6 shows the classification results in terms of ACC and AUC for task 2.497

As shown in Fig. 6, it can be seen that transfer learning strategy significantly improves498

the classification performance. Take base classifier 1, 2, 3, 4 fused via MHSA voting as an499

example, with the aid of transfer learning, it improves the ACC from 0.8106 to 0.8449, the500

AUC from 0.8196 to 0.8569, which has at least a 4.23% boost. Meanwhile, other methods501

trained with transfer learning have higher gain percentages, the ACC has an average gain502

of 5.65%, and the AUC has an average gain of 6.13%. These results indicate that the use of503

transfer learning strategy can indeed improve the classification performance on task 2.504

III.E. Influence of clinical information505

As introduced in Section II.C.5., base classifier 4 (i.e., MLP) is chosen for clinical information506

analysis. Base classifier 4 is fused with other base classifiers via MHSA voting to construct507

a multi-model ensemble framework. To investigate the influence of clinical information, we508

compare the classification performance achieved by Only Clin info (base classifier 4), Without509

III. RESULTS III.D. Influence of transfer learning



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

Ensemble of CNN for MCI and AD diagnosis page 19

vs. 

Figure 6: Classification results in terms of ACC and AUC achieved by base classifiers trained
without and with transfer learning for task 2. Base classifier 1, 2, 3 and base classifier 1,
2, 3, 4 are fused via MHSA voting. The error bars denote the standard deviations of the
results.
Clin info (base classifier 1, 2, 3 fused via MHSA voting), and With Clin info (base classifier510

1, 2, 3, 4 fused via MHSA voting). The corresponding results are as demonstrated in Table511

4.512

Table 4: Classification results of different methods with and without clinical information.
Task Method ACC SEN SPE AUC

AD vs. CN

Only
clin info.

0.9837 ± 0.0204 0.9756 ± 0.0209 0.9778 ± 0.0298 0.9848 ± 0.0167

Without
clin info. 0.9419 ± 0.0232 0.9268 ± 0.0311 0.9556 ± 0.0199 0.9545 ± 0.0205

With
clin info. 0.9861 ± 0.0182 0.9854 ± 0.0233 0.9867 ± 0.0221 0.9908 ± 0.0143

pMCI vs. sMCI

Only
clin info.

0.6980 ± 0.0870 0.7255 ± 0.0744 0.7037 ± 0.0661 0.6987 ± 0.0598

Without
clin info. 0.8408 ± 0.0350 0.8273 ± 0.0422 0.8234 ± 0.0406 0.8535 ± 0.0283

With
clin info. 0.8449 ± 0.0332 0.8350 ± 0.0405 0.8148 ± 0.0341 0.8569 ± 0.0214

Data are mean ± standard deviation.

As shown in Table 4, for the task of AD vs. CN, the use of clinical information can513

significantly improve the diagnosis performance. Compared with the results achieved by514

Without Clin info, With Clin info improves the ACC from 0.9419 to 0.9861, the SEN from515

0.9268 to 0.9854, the SPE from 0.9556 to 0.9867, and the AUC from 0.9545 to 0.9908. And516

the quantification biases of ACC, SEN, and AUC obtained by With Clin info are smaller517

than that of Without Clin info. Only Clin info can obtain similar performance to With Clin518

Last edited Date : III.E. Influence of clinical information
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info in terms of ACC. However, the SEN, SPE, AUC achieved by Only Clin info are lower519

than that achieved by With Clin info, and the quantification biases of these metrics are520

also higher. For the task of pMCI vs. sMCI, the use of clinical information also improves521

diagnosis performance, but not as significantly as the task of AD vs. CN. With Clin info522

yields better results, with the ACC of 0.8449, the AUC of 0.8569, which are higher than that523

obtained by the other two methods. Though Without Clin info yields similar performance524

to With Clin info, the quantification biases of all metrics are higher than that obtained by525

With Clin info. The above results reveal that the use of clinical information can provide526

better classification performance, and reduce the quantification bias of diagnosis.527

III.F. Indispensability of four base classifiers528

To prove the indispensability of the four types of base classifiers, we summarize and compare529

the classification performance of fused different types of base classifiers. Specifically, base530

classifier 1, 2, 3, and 4 are randomly fused by MHSA voting. The corresponding results for531

task 1 and task 2 are reported in Table 5, and some of the ROC curves for the two tasks are532

respectively represented in Fig. 7.533

Table 5: Classification results of fused different types of base classifiers.
No. of
Cls Members

AD vs. CN pMCI vs. sMCI
ACC AUC ACC AUC

1

Base classifier 1 0.9233 ± 0.0314 0.9393 ± 0.0323 0.7959 ± 0.0454 0.8081 ± 0.0271
Base classifier 2 0.9372 ± 0.0311 0.9480 ± 0.0207 0.7837 ± 0.0447 0.7929 ± 0.0251
Base classifier 3 0.9186 ± 0.0416 0.9388 ± 0.0315 0.7857 ± 0.0492 0.7963 ± 0.0332
Base classifier 4 0.9837 ± 0.0204 0.9848 ± 0.0167 0.6980 ± 0.0870 0.6987 ± 0.0598

2

Base classifier 1, 2 0.9396 ± 0.0276 0.9539 ± 0.0191 0.7999 ± 0.0371 0.8102 ± 0.0298
Base classifier 1, 3 0.9253 ± 0.0291 0.9405 ± 0.0198 0.8018 ± 0.0466 0.8143 ± 0.0248
Base classifier 2, 3 0.9380 ± 0.0323 0.9485 ± 0.0212 0.7993 ± 0.0322 0.8036 ± 0.0231
Base classifier 1, 4 0.9847 ± 0.0197 0.9863 ± 0.0155 0.7967 ± 0.0507 0.8098 ± 0.0336
Base classifier 2, 4 0.9856 ± 0.0184 0.9902 ± 0.0152 0.7901 ± 0.0581 0.8003 ± 0.0364
Base classifier 3, 4 0.9847 ± 0.0187 0.9866 ± 0.0152 0.7896 ± 0.0482 0.7998 ± 0.0342

3

Base classifier 1,2,3 0.9419 ± 0.0232 0.9545 ± 0.0205 0.8408 ± 0.0350 0.8535 ± 0.0283
Base classifier 1,2,4 0.9855 ± 0.0265 0.9902 ± 0.0144 0.8059 ± 0.0382 0.8154 ± 0.0350
Base classifier 1,3,4 0.9841 ± 0.0227 0.9862 ± 0.0156 0.8122 ± 0.0394 0.8205 ± 0.0312
Base classifier 2,3,4 0.9852 ± 0.0197 0.9900 ± 0.0137 0.8041 ± 0.0435 0.8181 ± 0.0344

4
Base classifier

1, 2, 3, 4 0.9861 ± 0.0182 0.9908 ± 0.0143 0.8449 ± 0.0332 0.8569 ± 0.0214

Data are mean ± standard deviation.

From Table 5, when four base classifiers are fused, the best classification results can534

be obtained, the values of ACC for task 1 and task 2 are respectively 0.9861 and 0.8449,535

the values of AUC are respectively 0.9908 and 0.8569. And the quantification bias is also536

satisfactory. Base classifier 1, base classifier 2, and base classifier 3 have similar performance537

III. RESULTS III.F. Indispensability of four base classifiers
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on both tasks. Base classifier 4 (i.e., MLP) achieves great performance on task 1, while538

it performs not good on task 2. When two base CNN classifiers are randomly fused, the539

classification results are similar to that achieved by a single CNN classifier, and the quantifi-540

cation biases are lower. Due to the influence of clinical information, any base CNN classifier541

(i.e., base classifier 1, 2, and 3) fused with base classifier 4 could further boost the diagnosis542

performance, especially in the task of AD vs. CN. Though one base CNN classifier fused543

with base classifier 4 can improve the ACC and AUC, the quantification biases of them are544

higher than that before fused with base classifier 4. When three base classifiers are randomly545

fused, the fusions that include base classifier 4 can yield satisfactory results in the task of546

AD vs. CN, which are better than the fusions only including base CNN classifiers. In the547

task of pMCI vs. sMCI, we can see that the fusions only including base CNN classifiers have548

the better performance than that fusions including base classifier 4.549

(a) ROC curves of AD vs. CN (b) ROC curves of pMCI vs. sMCI

Figure 7: Comparison of the ROC curves. The ROC curves are obtained by base classifier
1, base classifier 2, base classifier 3, base classifier 4, the fusion of base classifier 1, 2, 3, and
the fusion of base classifier 1, 2, 3, 4. The upper left area of ROC curve is zoomed for clarity.

From Fig. 7, it can be learned that the fusion of four base classifiers has better ROC550

curves than others. The results in Table 5 and Fig. 7 illustrate that the fusion of these base551

classifiers can achieve better diagnosis performance than a single classifier, and each base552

classifier could play an important part in the ensemble framework.553
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IV. DISCUSSIONS554

This work presents a reliable ensemble framework to diagnose AD and MCI using neural555

networks. MHSA voting improves the fusion of base classifiers in the ensemble, and entropy-556

based MIL strategy could use more effective information contained in sMRI. Overall, the557

proposed method provides the reliable diagnosis of AD and prediction of MCI conversion.558

We built our method based on ensemble learning for several reasons. First, though DL-559

based methods have been shown to surpass human experts in predictive accuracy, they tend560

to exhibit higher variance, especially when only a single DL model is adopted. However,561

reliable diagnosis is needed in the clinic, high variance makes it hard for a single model to562

generate convincing judgments. In contrast to a single DL model, ensemble learning that563

combines the outputs of multiple DL models has been proven to achieve better outcomes564

and generalizability49, which is more applicable in clinical settings. Second, because the565

characteristics of AD are concealed, slow, and non-lethal, the collection of samples is difficult,566

often resulting in the limited number of samples. The limited number of samples may lead567

to over-fitting or inadequate training of a model, and limit the identification of complex AD568

patterns. Ensemble learning has the power in dealing with these challenges32.569

We compared the performance of the proposed method against several ML-based and570

DL-based methods. In all compared methods, MRI images were preprocessed through a sim-571

ilar pipeline to this work, including motion correction, intensity correction, skull stripping,572

and normalization. Following this basic pipeline, different methods then performed some573

specific operations (e.g., tissue segmentation and slices sampled in this work) to generate574

slices, regions, or patches of the brain according to the needs of these methods. In addition,575

cross-validation and corresponding data split were also adopted in most of the compared576

methods18,20,21,25–28,34,43–45,47, and they took the average of the cross-validation results as the577

final performance. These means such as preprocessing procedures or cross-validation are a578

part of the compared methods and have no impact on demonstrating the effectiveness of the579

proposed method. As the results shown in Section III.A., our method significantly outper-580

formed the compared methods in classification accuracy for both tasks (AD vs. CN, pMCI581

vs. sMCI). Noting that some compared methods18,20,24,25,27,29,43,46,48 had quite unbalanced582

SEN and SPE, the imbalance of SEN and SPE indicates that the missed diagnosis or misdi-583

agnosis rate of these methods was high. A previous work29 achieved SEN of 42.11%, and the584

SPE of 82.43% in the task of pMCI vs. sMCI, which means only 42.11% pMCI patients were585

correctly diagnosed and 17.57% sMCI patients were misdiagnosed. The proposed method586

achieved balanced and satisfactory SEN and SPE for both tasks, which demonstrates that587
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our method can conduct a reliable diagnosis. Furthermore, the five-fold cross-validation ap-588

proach has been performed in this work. The mean values and standard deviation of ACC589

and AUC are as demonstrated in Table 5. The proposed method achieved the best results590

on both tasks, which had the ACC of 0.9861 ± 0.0182 and the AUC of 0.9908 ± 0.0143 on591

AD vs. CN task, the ACC of 0.8449 ± 0.0332 and the AUC of 0.8569 ± 0.0214 on pMCI592

vs. sMCI task. The quantification biases of these metrics were effectively reduced by the593

use of ensemble learning, which was lower than that of each base classifier. The results with594

low quantification bias generated by our method indicate that the proposed method is able595

to generate a robust diagnosis, which is also in good agreement with the effect of ensemble596

learning.597

In this work, MHSA voting is proposed to aggregate the outputs of base classifiers as598

previous studies34,36 typically adopted the common voting approaches which ignore the inter-599

actions among base classifiers. The majority voting, weighted voting, and SVM-based voting600

are commonly used for the aggregation in the ensemble. However, these common voting ap-601

proaches sometimes may cause a decrease or stay flat on results after fusion. The reason for602

this is that majority voting and weighted voting are not data-adaptive, they assign the fixed603

weight to each base classifier. Though SVM-based voting is a learnable ensemble approach,604

it leaves the interactions among the ensemble members out of consideration. MHSA voting605

has been shown to have an improvement on results after fusion. This implies that the in-606

teractions among the base classifiers can play a role during their fusion, and MHSA voting607

can exploit the interactions to generate better classification results during the fusion of base608

classifiers.609

While MIL strategy has been applied in the diagnosis of different diseases, to our knowl-610

edge, rare studies have explored it in the diagnosis of AD based on slice-level. We incorpo-611

rated entropy-based MIL strategy into base CNN classifiers to use more effective information612

contained in sMRI. As shown in Fig. 5, MIL strategy can indeed further improve the perfor-613

mance of both tasks in contrast to non-MIL methods, in which the proposed entropy-based614

MIL strategy has been shown to achieve the best classification results. Due to AD-related615

pathological areas having the uneven distribution in sMRI, non-MIL methods are easily af-616

fected, thereby resulting in sub-optimal performance in two tasks. Compared with non-MIL617

methods, MIL methods consider the relationships between slices, which is beneficial to im-618

proving the utilization of information contained in sMRI. The normal MIL methods (i.e.,619

mean MIL method, and maximum MIL method) consider that the relationships between620

slices have no difference, and the slices have similar feature expression abilities. Neverthe-621

less, the slices with abundant tissue information are generally getting more attention in622
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clinical diagnosis, and radiologists also focus on these slices. Similar to the habit of ra-623

diologists’ review of MRI, the proposed entropy-based MIL method measures the feature624

expression abilities of different slices according to their information entropy, which can gen-625

erate more reasonable embedding-level features for further classification. And therefore, the626

entropy-based MIL method has better performance than normal MIL methods.627

(a) Loss function curves with-
out transfer learning

(b) Loss function curves with
transfer learning

Figure 8: Comparison of the loss function curves achieved by training without and with
transfer learning for task 2.

Transfer learning improved the classification results in terms of ACC and AUC by628

∼4% across two tasks. This situation is consistent with existing studies28,29. The results629

demonstrate that the two tasks are correlated, and the supplementary information from630

AD and CN subjects implicitly enriches the features in the task of pMCI vs. sMCI during631

training. In addition, we also analyzed the influence of transfer learning on training duration.632

Here, we trained the proposed method for task 2 without early stopping and set the epochs to633

150. Fig. 8 shows the loss function curves with and without transfer learning during training.634

As observed in Fig. 8, the training loss has a faster downward trend than the validation loss,635

and after the convergence of training, the validation loss is slightly more than the training636

loss. With transfer learning, the initial values of training and validation losses (epoch 1)637

were lower than that without transfer learning, and the validation loss converged to about638

1.6 after epoch 64. The validation loss converged to about 2.0 after epoch 85 when transfer639

learning strategy was not adopted. These results show that the model can fit the data better640

and faster when using transfer learning. In this work, early stopping was adopted with the641

patience of 10 epochs on the validation loss, and the training time was five minutes per642

epoch. For the task of pMCI vs. sMCI, the training lasted about 6 hours, which can save643

about 1.7 hours in contrast to that training without transfer learning. For the task of AD644

vs. CN, the training time was about 7.5 hours.645

As different imaging modalities and clinical data can provide various information about646

AD patients, we adopted multimodal data (sMRI and clinical information) to develop an647

ensemble framework. In this work, the use of multimodal data led to an overall improvement648
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in both tasks, which improved the diagnosis performance and reduced the quantification649

bias. From Table 2, it can be observed that most studies using multimodal data have650

better performance than the studies using single modal data. Moreover, we analyzed the651

sensitivity of clinical information to two tasks. For the task of AD vs. CN, the use of clinical652

information only can also obtain satisfactory performance, while for the task of pMCI vs.653

sMCI, the use of clinical information only cannot achieve good results. These results show654

that the clinical information is more sensitive to the task of AD vs. CN than that to the task655

of pMCI vs. sMCI. It can be also learned that cognitive and neuropsychological measures in656

clinical information change greatly from normal cognition to dementia, and these measures657

have no significant change in CN or MCI stages. This inference is consistent with previous658

research50,51.659

AD is an irreversible neurodegenerative disease with concealed, slow, and non-lethal660

characteristics, which is also a serious social problem. The dementia symptoms caused661

by AD gradually worsen over several years. In general, a person with AD lives 4 to 8662

years after diagnosis but can live as long as 20 years, depending on other factors (e.g.,663

earlier diagnosis or intervention). At present, AD has no cure, some treatments can only664

temporarily slow the worsening of dementia symptoms and improve the quality of life for AD665

patients and their caregivers. Earlier diagnosis of AD is crucial for prolonging the lifespan666

and improving the quality of life for those with AD. Our proposed ensemble framework is667

able to generate reliable and robust results for the diagnosis of AD and the prediction of668

MCI conversion, which has great practical significance for the earlier diagnosis of AD. The669

detailed analyses of the results give an important indication that the proposed ensemble670

framework can potentially be employed in the reliable diagnosis of AD and prediction of671

MCI conversion. Furthermore, due to the characteristics of AD, the collection of AD samples672

is difficult in clinical settings. With ensemble learning, the dilemma caused by the limited673

number of samples can be solved to some extent32. The proposed method is based on674

ensemble learning, which makes our method potential to perform reliable diagnoses under675

limited data, thereby reducing the burden of physicians collecting data. In many clinical676

settings, because it is difficult to identify the exact cause of dementia, multiple diagnostic677

tests are typically adopted to determine if a person has AD, including brain imaging, mental678

cognitive status tests, etc. To closer to practical clinical application and obtain a more679

reliable diagnosis, we also adopted the multimodal data in this work. It is worth noting that680

our method can also achieve satisfactory results only using sMRI.681

This current work has some limitations despite its successful performance in AD diag-682

nosis and MCI conversion prediction. The black-box nature is a common limitation of deep683
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learning methods, which is also the main reason that limits the widespread application of684

medical artificial intelligence (AI). In clinical settings, to determine whether a person suffers685

from a certain disease, it needs to undergo a detailed clinical examination, and the physicians686

confirm the condition of this person according to the clinical test results. In this process,687

the basis for the diagnosis is detailed and clear. For medical AI, the details of algorithmic688

decision-making should also be exposed like clinical diagnosis, which is currently difficult.689

Note that conceptual understanding and experiences owned by physicians are impossible for690

AI to fully learn. To deploy an explainable AI in medical practices, it still requires the nec-691

essary human oversight52. The interactive deep learning with the “human in the loop” can692

be potentially considered as a robust way to handle explainability. This human-in-the-loop693

deep learning combines the conceptual understanding and experiences owned by physicians694

with the effectiveness of deep learning, which can ensure that decision-making is controllable695

and clinically justified. As a high level of accountability is required in the medical field, ma-696

chined decisions and predictions need to be explained clearly, our future work will include697

exploring human-in-the-loop deep learning.698

V. CONCLUSION699

In this paper, a robust ensemble framework is proposed for reliable diagnosis of AD and700

prediction of MCI conversion. Specifically, three base CNN classifiers with different scales701

of network width, depth, and resolution are designed to capture detailed features in sMRI.702

To better use effective information contained in sMRI, we incorporate entropy-based MIL703

strategy into base CNN classifiers, which can take the information densities of slices into704

account to generate more reasonable features for classification. Additionally, one shallow705

classifier (i.e., MLP) is employed to analyze the clinical information. The final diagnosis is706

achieved by MHSA voting approach that aggregates the predictions of base classifiers while707

considering the interactions among them. Extensive experimental results on ADNI database708

show that the proposed ensemble framework has reliable and competitive performance in709

both tasks.710
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